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 Abstract 
 This project explores the use of deep learning 
 models to classify images of ancient Egyptian 
 monuments, focusing on structures 
 photographed from various angles and 
 perspectives. We compare the performance of 
 Convolutional Neural Networks (CNNs) such as 
 ResNet-50 with Vision Transformers and hybrid 
 models, aiming to evaluate their robustness to 
 viewpoint variation and architectural similarity. 
 Using the “egypt-monuments-dataset” available 
 in Kaggle, we aim to address challenges such as 
 sample size, limited viewpoint diversities, and 
 class imbalance. Our approaches are broken 
 down into two models, incorporating 
 fine-tuning, data augmentation, and metric 
 learning to improve classification accuracy. 
 Through transfer learning and model 
 comparison, we aim to identify which models 
 generalize best under constrained conditions. 
 This work contributes to cultural heritage 
 preservation by testing machine learning 
 systems on region-specific, low-resource 
 datasets and highlighting the importance of 

 model adaptability in real-world classification 
 problems. 

 1. Motivation 
 For our project, we will focus on using 

 deep learning to classify images of Egyptian 
 Monuments from various angles. Many state of 
 the art models are trained and tested on a large 
 and varying dataset. The Egyptian Monuments 
 we will focus on share many similarities and are 
 all from the same region. Some are of figures, 
 and share common body and face features, as 
 well as similar clothing. Other monuments are 
 pyramids, again very similar structures, while 
 there are also temples which share many 
 common building features. We knew our main 
 challenge was going to be differentiating 
 between these similar structures, especially 
 considering that the pictures were from all 
 different angles, and we had to deal with 
 occlusion. However, while these monuments are 
 similar, they are also all unique in their own 
 way, and we believed we could design deep 
 learning models to differentiate between them. 
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 We hoped that our project would not only 
 demonstrate Deep Learning's ability to classify 
 Egyptian Monuments, but more broadly, Deep 
 Learning's potential to distinguish similar 
 structures from a common region if the right 
 models and fine tuning are used. For our models, 
 we used 70/15/15 train, validation and test split. 
 As this is a classification model, we measured 
 our models using accuracy, or the percentage of 
 the time the model predicted the correct 
 monument. 

 2. Existing Literature 
 The literature reviews we conducted 

 examine three key approaches to improving 
 deep learning based image classification in the 
 context of visual similarity and data 
 augmentation. Wei et al. (2022) proposes a 
 GAN-based method for generating multi-view 
 angles and data expansion. Their project focuses 
 on grocery product recognition, aiming to 
 expand their dataset to create a more 
 comprehensive and robust model that remains 
 unchallenged by angle changes. This approach 
 offers a solution for augmenting 
 underrepresented classes and improving the 
 model–highly relevant for datasets like the 
 Egyptian Monuments Dataset, where not every 
 monument has equal representation across 
 training epochs and iterations. 

 Arandjelović et al. (2016) introduces 
 NetVLAD, a CNN-based embedding method, 
 which excels in place recognition. This is 
 particularly effective, as it focuses on image 
 similarities as opposed to fixed class labels, 
 which offers an alternative approach to 
 combating subtle structural differences between 
 monuments. This is especially relevant for 
 Egyptian monument classifications as this offers 
 a unique methodology to refine the model and 
 improve potential weaknesses in monument 
 similarities. 

 Furthering these ideas, Hesham et al. 
 (2021) provides a survey of CNN advancements 

 and underscores the architectures like ResNet50, 
 which introduces residual connections to 
 stabilize and deepen learning. This paper uses a 
 small dataset of Indian Monument images (1,286 
 images total). At the time, they felt they did not 
 have sufficient datasets for classifying Egyptian 
 monuments, which was their overall project 
 goal. They aimed to compare ML methods like 
 KNN to Deep Learning models like ResNet-50 
 and VGG16 for their dataset. After multiple 
 experiments and hyperparameter tunings, they 
 found that ResNet-50, a DL method, had the 
 best results, with almost 94% accuracy. This was 
 especially relevant to the Egyptian Monument 
 Dataset, as it demonstrates a stable approach to 
 creating an image-recognition model. 
 3. Limitations of Existing Models or Methods 

 While the explored methods offer 
 practical approaches for our model creation, they 
 come with undeniable limitations. More broadly, 
 image classification models have notable 
 restrictions. Deep learning models, especially 
 large ones like Vision Transformers, are often 
 data-hungry, needing thousands of well-labeled 
 images per class to perform well. This makes 
 training from scratch difficult, increasing the 
 risk of overfitting when attempting to fine-tune 
 large-scale models. 

 Another notable challenge is viewpoint 
 invariance. Many existing models are not built 
 to naturally handle rotated, occluded, or angled 
 views, unless they have been specifically trained 
 on those variations. This becomes especially 
 challenging for the Egyptian Monument Dataset, 
 where monuments often share key architectural 
 features like columns, engravings, and stone 
 textures. This makes identification tricky for 
 models that depend heavily on global visual 
 cues. This may lead to misclassifications, 
 especially when considering the varying 
 perspectives of the monuments in the dataset. 

 Finally, there is an undeniable gap in the 
 literature when addressing region-specific 
 datasets. Landmark recognition work is 



 historically focused on globally iconic sites like 
 the Eiffel Tower of the Taj Mahal. There has 
 been less focus on more similar, heritage-rich 
 datasets like the Egyptian monument one, which 
 often showcase more nuanced complexities in 
 defining specific feature vectors. 
 3.1 Limitations of the GAN Model 

 Generative Adversarial Networks, 
 otherwise known as GANs, are deep learning 
 models that generate synthetic data while 
 simultaneously training an opposing generator 
 and discriminator. While GAN images may help 
 combat small or limited datasets, they often 
 contain vague visual artifacts that lack the finite 
 details necessary for classifying complex 
 structures like ancient monuments. This gap 
 between real and synthetic data may limit 
 classification accuracies, which may become 
 problematic in this context. 
 3.2 Limitations of NetVLAD 

 NetVLAD is a CNN-based feature 
 aggregation method which generates image 
 embeddings by summarizing local descriptors 
 into compact vectors. While this may be 
 especially effective in place recognition, it does 
 not perform direct classification, needing 
 integration with other models or high levels of 
 post-processing. This reliance on embedding 
 similarity can also struggle when identifying 
 highly similar structures that lack distinctive 
 global features. This particular approach was 
 incompatible with our dataset, which already 
 contained specific class labelings. 
 3.3 Limitations of ResNet-50 

 ResNet-50 is a CNN with 50 layers that 
 advantages residual connections to allow deep, 
 stable learning. While it is efficient, effective, 
 and often high-performing, it may experience 
 execution plateaus when used on data with 
 subtle class differences. This is especially 
 problematic for the Egyptian Monument dataset, 
 as one key goal is to combat difficulties the 
 model may have in structural similarities. 
 Additionally, ResNet-50 may not be able to 

 capture long-range spatial dependencies as well 
 as transformer-based models. 
 4. Dataset 

 The dataset being used in our project is 
 the “egypt-monuments-dataset,” which was 
 taken from kaggle. It is 222.69 MB in total and 
 consists of 4782 total pictures, split between 22 
 ancient Egyptian monuments, giving roughly 
 217 images per monument. The minimum and 
 maximum numbers of pictures for singular 
 monuments are 68 and 410, respectively, which 
 was offset using data augmentation. Each image 
 in the dataset displays its monument from a 
 different viewpoint or in a different lighting. The 
 dataset is prelabeled based on the pre existing 
 subdirectory of each image, but we had to 
 reconfigure the data structure, as it was easier 
 for the model. 
 4.1 Data Loading, Preprocessing, and 
 Augmentation 

 The images in our dataset being used are 
 all JPG, JPEG, and PNG files, so any other file 
 type is filtered out. The images were then 
 reorganized based on their monument name 
 subdirectories to clean the dataset. Each image 
 was resized to 256x256 and then cropped back 
 down to 224x224, so they were all the same size. 
 Then, they were randomly horizontally flipped, 
 rotated 15º, and given a color jitter. 

 To make sure each monument was 
 equally represented in the model, we balanced 
 the dataset by oversampling the 
 underrepresented classes. This created an equal 
 number of images for each monument in the 
 dataset. 
 4.3 Data Splitting 

 After the data had been preprocessed, it 
 was split into the proper training, validation, and 
 test subsets. This is necessary to prevent 
 overfitting and to limit bias in the model. We 
 split our dataset into the following distribution: 
 Training = 70%, Validation = 15%, and Test = 
 15%. 



 DataLoader was utilized for creating 
 batches and shuffling the training data for each 
 iteration of the model being created. 
 5. Proposed Method 

 We will experiment with Convolutional 
 Neural Networks (CNNs) and CNN-Transformer 
 Hybrids, both of which are supervised learning 
 models. These models were fine tuned through 
 manipulation of various hyperparameters and 
 architectures. In doing so, we hoped to learn 
 how to manipulate our model's parameters and 
 architecture to create a highly effective image 
 classifier. 
 5.1 Convolutional Neural Networks 

 CNN models are often the default for 
 image recognition, based on our exploration of 
 existing work and literature. CNNs share 
 weights and biases across hidden neurons in a 
 layer, so they are more efficient and effective at 
 learning the patterns in the inputs. There are two 
 types of hidden layers in CNNs, being pooling 
 and fully connected layers. Pooling layers 
 reduce the dimension of feature maps, in turn 
 reducing computational costs. Fully connected 
 layers enable the model classifications to be 
 made and then processed to the output layer. 
 CNNs implement backpropagation, which 
 adjusts the weights based on the difference 
 between the predicted and actual outputs. 
 5.1.1 Our CNN Model 

 Our CNN model uses ResNet-50 as its 
 backbone. We chose to use ResNet-50 due to its 
 exceptional ability in feature extraction, and 
 ability to inhibit the vanishing and exploding 
 gradient problem. Additionally, ResNet-50 is 
 pretrained on the ImageNet dataset, which is a 
 very large and well-established dataset for image 
 classification. ResNet-50 has 50 layers in total, 
 the first 49 of which are frozen. This is due to 
 the pretraining on ImageNet, so the early layers 
 are already tuned to many general features like 
 edges, textures, and basic shapes. 

 We updated the classifier in the general 
 ResNet-50 model, so it would be better tailored 

 towards our dataset. This new classifier consists 
 of the following: Linear → ReLU → Dropout → 
 Linear. We use a ReLU activation function 
 because that is the typical activation function 
 implemented with the ResNet-50 model. 
 Additionally, a Dropout layer is added to prevent 
 overfitting, with the dropout rate being set to 0.3 
 after preliminary testing. 

 CrossEntropyLoss was then used as the 
 loss function, since it is commonly used in 
 image classification models. This is because it 
 can quantify the difference between the model's 
 predictions and true class labels. After further 
 research, we decided to use Adam as an 
 optimizer, since it can improve model efficiency 
 and accuracy. Adam incorporates adaptive 
 learning rates and momentum, so the 
 optimization will converge faster than other 
 optimizers. 

 In total, our CNN model is 51 layers, 
 with the 49 frozen layers in the ResNet-50 
 backbone, and 2 additional layers in our 
 classifier. There are 512 hidden neurons in the 
 modified fully connected block, and 22 neurons 
 in the output layer. 
 5.2 Hybrid CNN-Transformers 

 Hybrid CNN-transformer models are 
 able to combine the advantages of both models. 
 The advantages of the CNN model are outlined 
 above in section 5.1. Transformers are able to 
 implement attention, so each token is able to 
 directly influence the other tokens in the input. 
 Additionally, they allow for parallel processing, 
 enabling the model to learn and calculate 
 multiple weights simultaneously, speeding up 
 the training process. Transformer models 
 succeed best in capturing global trends, while 
 CNNs are better at extracting local features in 
 the input. 
 5.2.1 Our Hybrid Model 

 The backbone of our hybrid 
 CNN-transformer model is EfficientNet-B0. 
 This is a pre-trained CNN from the ImageNet 
 dataset specialized for image classification 



 problems, making it appropriate for our project. 
 It is the smallest of its model family, best suited 
 for our small compute ability compared to more 
 sophisticated models. 

 EfficientNet-B0 backbone has a total of 
 231 layers. We customized the model once again 
 to be better suited towards our dataset. We added 
 two multi-head self attention blocks to the 
 model. These blocks allow the model to focus on 
 different aspects of the input sequence 
 simultaneously, providing a faster and more 
 complex understanding of the data. This is then 
 put through an average pooling layer and finally 
 a fully connected layer, in order for the class 
 predictions to be made. We did not update the 
 classifier in this model, but could have benefited 
 from that implementation, if time permitted. 

 As was done in the CNN model, we 
 used CrossEntropyLoss as the loss function and 
 used Adam as an optimizer. This allows for the 
 only difference between the models to be their 
 components, rather than how they are measured, 
 allowing an appropriate comparison between the 
 two. 

 Our hybrid CNN-transformer model has 
 a total of 237 layers: 231 coming in the 
 EfficientNet-v0 backbone, four in the multi-head 
 self attention blocks, with one pooling, and one 
 fully connected layer. There are a total of 1,280 
 hidden neurons in this model. 
 5.3 Hyperparameters 

 We ran many different variations of each 
 model by changing the hyperparameters. This 
 was done by changing the following 
 hyperparameters with their respective possible 
 values used: learning rate = 0.001, 0.005, batch 
 size = 16, 32, 64, and number of epochs = 50, 
 200. All possible combinations with these 
 hyperparameters were put into models. 
 5.4  Measurements 

 We were primarily concerned with 
 testing accuracy, since it roughly measures the 
 strength of the model. Additionally, we 
 compared training and testing accuracy to assess 

 overfitting. Moreover, this would keep model 
 runtime to a minimum without significantly 
 impacting testing accuracy. Therefore, validation 
 loss also proved to be important–but mainly for 
 the sake of early stopping and choosing the best 
 model. Furthermore, since we experimented 
 with different model structures, batch sizes, 
 learning rates, and training epochs, we compared 
 both accuracy and runtime. 
 6. Compute Budget 

 Our models were trained and assessed 
 using a computer with an Nvidia RTX 3070. The 
 training of the 12 variations of the ResNet 50 
 model took about 11 hours, while the training of 
 the hybrid model took 7 hours for the 12 
 variations. The difference in the time each took 
 could be because the hybrid model had less 
 epochs as well as early stopping. Each of the 12 
 variations for each model type had different 
 parameters. Compute power also was not a 
 limiting factor for us, as it appears more epochs 
 did not improve results. When working on the 
 ResNet50 model, it did not improve when using 
 200 epochs rather than 50. For the hybrid model, 
 when the max epochs was set to 100, it always 
 stopped early. 
 7  Results 

 When hyperparameters were tuned 
 effectively, both of our models performed quite 
 well, achieving well over 90% accuracy in many 
 instances. With this being said, we trained 12 
 variations of both models, with several possible 
 combinations of epochs, batch size, and learning 
 rates, and there was a wide variation of accuracy 
 for many of the variations, especially those with 
 a higher learning rate. 
 7.1  ResNet50 Model Results 

 For our experimentation with our 
 ResNet50 model, we trained and tested our 
 model with all 12 combinations of either 50 or 
 200 training epochs, batch sizes of 16, 32, and 
 64, and learning rates of 0.001 and 0.005. Please 
 view figure 1 below. 



 learning rate  training 
 epochs 

 batch size  test accuracy 

 0.001  50  16  93.2692% 
 0.001  50  32  93.9560% 
 0.001  50  64  94.6429% 
 0.001  200  16  95.4670% 
 0.001  200  32  95.8791% 
 0.001  200  64  96.0165% 
 0.005  50  16  84.3407% 
 0.005  50  32  85.3022% 
 0.005  50  64  90.3846% 
 0.005  200  16  87.3626% 
 0.005  200  32  90.1099% 
 0.005  200  64  89.2857% 

 Figure 1, ResNet50 Experiment Results 

 As can be seen above, there is roughly a 
 difference of 8% in test accuracy between our 
 best and worst performing versions of our 
 ResNet50 model. Having a learning rate of 
 0.001 yields better results across the board, 
 however, the number of training epochs and 
 batch size seems to be much less influential, 
 though, there is a very small trend of 
 improvement as both of these are increased. 
 7.2 Hybrid Model Results 

 Similar to our experimentation with our 
 ResNet50 model, we also tested 12 
 hyperparameter combinations with our hybrid 
 model, however, we instead used 30 and 100 
 epochs with early stopping, since this model 
 proved more computationally demanding and 
 took longer per epoch. Figure 2 will include the 
 results below, however, it also includes the 
 epoch at which the best model was found, since 
 this model was run with early stopping, and 
 therefore the epoch at which its best version was 
 found is valuable information. 

 learning 
 rate 

 training 
 epochs 

 best 
 epoch 

 batch size  test 
 accuracy 

 0.001  30  29  16  97.91% 
 0.001  100  8  16  97.07% 
 0.001  30  13  32  97.77% 
 0.001  100  4  32  96.09% 
 0.001  30  29  64  98.61% 
 0.001  100  13  64  97.91% 
 0.005  30  11  16  3.07% 
 0.005  100  10  16  31.38% 
 0.005  30  30  32  41.14% 
 0.005  100  24  32  37.24% 
 0.005  30  3  64  8.37% 
 0.005  100  65  64  92.61% 

 Figure 2, Hybrid Experiment Results 

 Similar to the ResNet50 model, the 
 hybrid model performs better with a learning 
 rate of 0.001 as opposed to 0.005, however, the 
 differences in performance are far more 
 significant. Our intuition was right to use fewer 
 epochs with early stopping, as the best epoch 
 column shows that more training would have 
 been ineffective, however, this model also shows 
 far more sensitivity to changes in batch size, 
 especially with a learning rate of 0.005. 
 Additionally, Due to the very poor results in 5 of 
 the 6 variations with a learning rate of 0.005, we 
 suspect a vanishing or exploding gradient, once 
 again demonstrating one area where the 
 ResNet50 model comes out on top. 
 7.3 Class-Performance Comparison 

 To look at class performance and where 
 our models may have been getting mixed up, we 
 looked at confusion matrices, with one example 
 from the hybrid model below (figure 3). We see 
 the clear diagonal, showing that there was not 
 any class that our model significantly struggled 
 to predict. Also when looking at its rare 
 incorrect predictions, it connects back to what 
 we discussed in our motivation, the similarities 
 between monuments. Incorrect predictions for 
 pyramids were almost all predicting other 



 pyramids. The same can be said for statues and 
 temples. For example, the class that was the 
 least accurate was the Menkaure Pyramid. It 
 incorrectly predicted the Bent Pyramid twice, 
 and the Khafre Pyramid 4 times. While this is 
 one example of our confusion matrices, all other 
 matrices for both our ResNet models and hybrid 
 models were similar and reflected these patterns. 

 Figure 3, Example Hybrid Model Confusion Matrix 

 8. Limitations and Future Work 
 Our project did achieve our goal of 

 creating a functional deep learning model 
 capable of classifying ancient Egyptian 
 monuments, even with image augmentation and 
 occlusion. It also demonstrates the broader 
 ability of deep learning to distinguish between 
 visually similar structures–when sufficient 
 fine-tuning and model design are implemented. 
 Despite this accomplishment, our model did 
 have undeniable limitations. 

 For one, the model developed was 
 relatively lightweight, containing few trainable 
 parameters. This likely limited its ability to learn 
 highly nuanced features. Future research should 
 explore more advanced architectures and 
 conduct broader hyperparameter optimization to 
 enhance accuracy and generalizability. 
 Promising models include YOLOv5, 
 EfficientNetV2, and multilayer perceptrons, 
 (MLPs). In addition, future experiments could 

 benefit from a further exploration of learning 
 rates, epoch counts, and batch sizes to further 
 refine model performance. 
 8.1 Limitations of our Hybrid Model 

 A major limitation of our hybrid model 
 is its complexity. While its architecture has the 
 potential to yield favorable accuracy results, it 
 also makes it far more computationally intensive 
 when compared to standard CNNs. The hybrid 
 model also experienced extreme levels of 
 performance variation and sensitivity to 
 hyperparameter changes. As previously 
 mentioned, we suspect a potential vanishing or 
 exploding gradient issue to be the root cause of 
 this problem. This means without intensive 
 hyperparameter training, the model is simply not 
 reliable. Altogether, while our hybrid model has 
 the potential to perform well, it requires 
 sufficient fine tuning and potential architecture 
 changes to reach optimal performance. 
 8.2 Dataset Limitations 

 Our dataset is fairly small by image 
 recognition standards, consisting of just under 
 5,000 images across 22 classes. It is also quite 
 imbalanced between classes, with certain 
 monuments being represented by as few as 68 
 images, while others over 400. Our 
 oversampling of smaller classes increases the 
 chances of overfitting on these classes, 
 potentially artificially boosting accuracy on 
 minority classes. These imbalances and limited 
 viewpoint diversity present challenges, which 
 become especially prevalent when evaluating 
 performance on unseen data. These factors may 
 skew the results of the data or generalize its 
 performance. Future work should consider 
 additional data augmentation techniques or the 
 collection of more balanced datasets to support 
 broader applicability. 
 9. Conclusion 

 We were happy with our models overall 
 ability to accurately predict Egyptian Monument 
 Images. Through our use of ResNet50 and 
 hybrid models, we were able to consistently 



 achieve accuracy in the 90% range. This shows 
 that Deep Learning models can be used to 
 classify region specific images that share many 
 similarities, as well as handle different angles 
 and occlusion. We hope this spurs on further 
 research into this sector of image classification. 
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